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I. Phys. A: Math. Gen. 22 (1989) 4707-4728. Printed in the UK 

Exponential storage and retrieval in hierarchical neural 
networks 
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M/S-A36, 12001 Technology Drive, Eden Prairie, MN 55344, USA 

Received 8 December 1988 

Abstract. A hierarchical neural network model capable of storing and retrieving an 
exponential number of states is introduced. Formulated on a spin glass analogy, the 
network spins (neurons) are organised into a multitier cluster hierarchy such that, for an 
N-spin sytem, the number of stored states grows exponentially with N. Relaxation occurs 
at zero temperature by what is essentially a tunnelling process and can be implemented 
using either a bottom-up or top-down updating procedure. As a result of the encoding 
prescription, the stored states are highly correlated and can be embedded within an 
ultrametric topology. The information capacity is determined, as well as the model’s ability 
to content-address its stored memory patterns. Numerical simulations illustrating the 
operation and effectiveness of various hierarchical systems are also presented. 

1. Introduction 

Neural network models belonging to the Hopfield [ 11 and Little [2] class are assemblies 
of binary-state elements (‘neurons’) that interact collectively through some form of 
coupling matrix. These models, which have their origins in the earlier work of 
McCulloch and Pitts [3], exhibit remarkable computational properties and may be 
useful as biological memory paradigms. When viewed as models of memory [4 ,5]  
such networks are, however, limited in the number of states they can reliably store. 
Recently, this particular class of neural networks has benefited from its similarity to 
spin glasses, which during the past few years, have become relatively well understood 
[ 6 ] .  Motivated further by this similarity, we demonstrate that a substantial increase 
in storage capacity is possible when the stored states are correlated in a way that 
parallels the hierarchical configuration of states found in spin glasses. 

The lack of long-range order in spin glasses, even at low temperatures, is the result 
of random coupling between spins and gives rise to an exponential number of metastable 
states [7]. It was MCzard er al [8] who showed that these states are hierarchically 
arranged, i.e. the space of spin glass states exhibit an ultrametric topology. The 
possibility of constructing ‘ordered’ spin glass states within neural network systems 
for use as associative memory devices has been discussed by several authors [9, IO]. 
In particular, our work was inspired by an attempt to implement the scheme of 
Dotsenko [ 9 ] .  

The first part of this paper begins with a brief review of the Hopfield neural network 
model, noting in particular its ability to store states and its overall capacity to store 
information. Next, we introduce a hierarchical model originally proposed by Dotsenko 
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[9], but now modified to function at zero temperature (i.e. in the absence of external 
stochastic noise). In this model, the spins (neurons) are grouped into clusters forming 
a hierarchy which ultimately governs the interaction amongst the spins and indirectly 
defines the correlation structure of the stored states. After determining the optimum 
cluster size which maximises the total number of states, we then examine the information 
capacity of the stored states, their ultrametric structure and content addressability. 
Also provided are several numerical examples illustrating the operation and effective- 
ness of the model. We conclude with a summary of our results and speculate on the 
possible biological importance of hierarchically organised neural networks. 

2. The Hopfield model ( f l  implementation) 

Consider a set of N Ising spins or ‘neurons’ which can take on the values *l and are 
interconnected by a connection strength matrix JV between the ith and j th  spins. The 
state of the N-spin system at any given moment ( r )  is specified by the vector { s , ( t ) } .  
The state of the system is allowed to change by following an asynchronous updating 
prescription. That is, we select at random a single spin si(t) within the network and 
update its present state to a new state s,( t + 1) using 

s, ( r + 1 ) = sgn( Xi) (2.1) 

where Xi is the spin’s local field defined by 

N x, = JijS,(t). 
j = l  

In this particular implementation it is assumed that the threshold for each spin is zero. 
The Hopfield model can store or ‘memorise’ a given set of approximately orthogonal 

states { s i r ) } ,  r = 1,2, . . . , PH using the following Hebb [ l l ]  algorithm: 

i = j .  

This definition allows the identification of an energy function E 

(2.4) 

with the property that A E  = ( E (  t + 1) - E ( t ) )  will be a monotonically decreasing 
function for each new update. Hence, the stored states create local ‘basins of attraction’ 
in the state-energy space of the network. 

For each stored state, the corresponding basin of attraction will, in general, receive 
perturbations from the presence of the other stored states. The actual level of interfer- 
ence will depend on the total number of stores attempted. This effect is evident from 
a signal-to-noise analysis of the local spin field (2.2). Specifically, one finds for some 
memorised configuration r that the potential in this approximation is given by 

x, = ( N - 1 )s! r ,  * [ ( P” - 1 )( N - 1 )] I’2 (2 .5 )  
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showing that, on average, the stored state is reinforced by a term of O ( N )  with a 
competing RMS interference noise term of C( N P ,  

The interference factor imposes a practical upper limit on the number of stored 
states possible using the Hebb algorithm (2.3). If the number of stored states exceeds 
N the network tends to saturate and lose its ability to reliably store images. In this 
saturated or ‘chaotic’ regime, the network is analogous to a spin glass and is now 
dominated by the spurious states which are admixtures of the original patterns. These 
states also serve as equally likely memory attractors and hence can interfere with the 
memory recall capability of the network. In the chaotic state, the model is essentially 
the Sherrington-Kirkpatrick [ 121 long-range interaction spin glass model which exhibits 
in the low-temperature regime an exponential number of metastable states. Bray and 
Moore [7] have shown that the number of metastable states increases exponentially 
with N. 

At zero temperature, essentially perfect recall can be achieved in the Hopfield 
model provided the ratio of the number of stored vectors PH to N (denoted by c y )  is 
much less than (2 In N)- ’  where N is assumed to be large [13]. That is, when cy is 
sufficiently small the energy minima correlated with the stored vectors represent global 
minima of the system. Amit et a1 [14] using the replica method [15], and other 
investigators [ 161 using computer simulations, have studied the effects of increasing 
cy on the general storage capability of the network. In particular, they identify two 
phase transitions. The first transition occurs when the spurious states, corresponding 
to admixtures of several patterns, have energies lower than the energy minima associated 
with the nominal vectors being stored. As a consequence, bit errors begin to appear 
in some of the recalled vectors. A further increase in cy brings on the second phase 
transition and the disappearance of any correlation between minima and nominal 
vectors. Amit et a1 [14] found that the two phase transitions occur at 

cy = 0.05 1 c y ;  = 0.138. (2.6) 
Replica symmetry breaking effectst will slightly modify these results. Numerical 

calculations performed by Amit et a1 [18] indicate that the replica breaking effects are 
indeed small, finding cy; to be 0.145. These results are also supported by recent rigorous 
results reported by Newman [19]. Up until now we have assumed N to be large. 
However, when N is small, finite-size effects can become important and will be 
significant for the individual clusters in the hierarchical model which follows. For a 
discussion on finite-size effects in the context of the Hopfield model, see, for instance, 
Wallace [ 161. 

For more general storage prescriptions other than (2.3), the maximum storage 
capacity for random uncorrelated states which are stable against successive updates 
(2.1) approaches 2N [20]. However, in actual cases where (Y is large (e.g. 0.5 and 1.0) 
the content addressability apparently suffers [21]. Finally, we note that in the Hopfield 
model for the simple case when the states are uncorrelated and PH is small enough 
that essentially no errors occur in the retrieved patterns, the information capacity of 
the network is Z H  = PHN (see appendix 1, (A1.2)). In appendix 1 we also show that, 
if the patterns are constrained to a fixed magnetisation MH, then the information 
capacity becomes 

(2.7) 

A more complicated expression applies when errors in the recalled patterns are allowed. 
t An introductory discussion of replica symmetry breaking can be found in, e.g., [17]. 
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3. The hierarchical model 

The present hierarchical model is a modified version of a finite-temperature model 
originally proposed by Dotsenko [9] but altered to function at zero temperature. In 
this model, the intention is to construct an  'ordered' spin glass which permits in pinciple 
the memorisation of an  exponential number of state vectors each correlated with a 
metastable state. Starting with N Ising spins, we partition the system into clusters 
such that the clusters at  the mth level contain k,  subclusters of the next lowest level. 
This procedure produces a hierarchy of clusters terminating with the lowest level 
clusters, each of which contain k,  spins. For a n  n-level hierarchy the total number of 
spins is then N = k , k , .  . . k n - ,  . 

At any given level m, there is then a family of clusters denoted by (0 ,  ,, , ,a , ,  ,*,., ,',,, } 
where the series of subscripts indicate the genealogy, tracing the chain of ancestor 
clusters starting with the nth topmost level, followed by n - 1 and ending at the mth 
level cluster. That is, the subscript a, = 1 , 2 , .  . . , k ,  labels the k ,  clusters belonging 
to the mth level in the hierarchy. Figure 1 shows an example of an  n = 3 level hierarchy 
of spin clusters containing a total of k,k,  k2 spins. 

51 52 SKO 

Figure 1. An n = 3 level hierarchical tree of spin clusters. The lowest ( m  = 1 ) level clusters 
each contain k,,  spins and  the higher ( m  > 1) level clusters each contain k , , , _ ,  subclusters 
from the m - 1 level. Ellipses denote  subclusters o r  spins not explicitly shown. 

For each cluster, fla,,,.. , . ,a , ,  we introduce a corresponding mth level magnetisation 
defined by 

(3.1) 

When m = 1 the sum on the right-hand side of (3 .1)  is then simply over the spins within 
the cluster i la , , , , , ,a t , .  Finally, for each of these cluster magnetisations (ZO) we can also 
define a n  mth level ( m  3 1) effective Ising spin variable &,, defined by 
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where i, is a short-hand notation for the cluster indices a,, . , . , a,.  We will often 
write Ma,,, , , , , .a, ,  as simply M ,  whenever the distinction between the individual mth level 
clusters is unimportant. 

3.1. The storage prescription 

In the hierarchical model, the interaction between spins is dependent upon the par- 
ticular cluster that each spin happens to reside. Within each cluster, the storage of 
information is accomplished with an Hebbian algorithm as in (2.3).  For instance, in 
each of the first level clusters, spins s,, within the clusters interact with each other 
through the following zero-diagonal connection matrix: 

(3 .3 )  

( i o , j o ) ~ f l a ,  ,.... a , ,  

where the superscript ro identifies one of pa possible states to be stored within the 
cluster ila,,,,,,a,,. Note that in (3.3) Jt:I0 represents one of N / k o  diferent interaction 
matrices, one for each of the N /  ko first-level clusters. 

In general, the interaction of spins residing in different clusters, say clusters 
f la , , , . a , , ,+I . .  .. . .a ,$  and flZb ,,,, a, , ,+ ,,..., a,, will depend on the interaction of the corresponding mth 
level ( m  s 1) effective Ising spins S;,,, and S;,,,, respectively. Analogous to (3 .3) ,  the 
effective Ising spin interaction is mediated by an mth level zero-diagonal connection 
matrix defined by 

(3 .4)  

( im, jm)ef la , , ,+ l .  .a,, 

where the superscript r,  = 1 , 2 ,  . . . , p ,  identifies a particular mth level cluster state to 
be memorised (in terms of the effective spins ;:,~;IJ’) and where p ,  is the maximum 
number of different configurations of the mth level effective spins that we wish to 
store. Note that the total number of entries in all of the J!!:!,, is not greater than the 
total number of entries found in Jl, for the Hopfield model with an equivalent number 
of spins. 

With the individual connection matrices defined, a corresponding cluster energy 
can be identified analogous to expression (2.4).  By replacing J y  and s, in equation 
(2.4) with the appropriate values of Ji:I0 (J:,::) and sb( iIm 1, respectively, one obtains 
the energy expressions for the individual clusters. 

3.2. An updating algorithm 

Having established a method for storing states, we now describe a procedure for 
updating the network. Unless it is clear from context, we shall refer to states belonging 
to individual clusters as cluster states and states involving all N spins as network states. 
At zero temperature, Dotsenko’s proposed model occasionally gets stuck in cluster 
states having magnetisations that do not necessarily place the upper level clusters into 



4712 C R W i l l c o x  

their lowest energy states. This problem limits the model’s usefulness as a content- 
addressable machinet. In the present model we overcome this limitation by introducing 
what is effectively a tunnelling process. 

When a cluster state is stored within the network via (3 .3)  or (3 .4)  its conjugate 
state defined by {s:,:’~’} + {F;,:JJ’} = -{s:(:t~’} or {!:.,)’} + {F:,:;rr)} E -{!:.,:;”’} is also stored, 
owing to the invariance of J:,m,,:, under interchange of i, and j,. Hence, for each 
cluster, either sign of the stored state magnetisation is possible. This flexibility allows 
one to arbitrarily specify the stored state of the next highest level parent cluster. As 
will be shown, when the network is relaxed, cluster states will be provided with the 
opportunity to selectively invert, or ‘tunnel’, to their conjugate form in order to locally 
minimise their energy, regardless of their level within the hierarchy. 

Beginning with an  arbitrary configuration of spins, the system can be relaxed using 
either a bottom-up or  top-down updating sequence. In  general, the mth level cluster 
states ( m  3 1 )  are determined by the sign of the mth level potential, viz 

! ! , , , ( r +  I ) =  sgn(XJ,m)) (3.5) 

X!’,m’sx Jj,mj:,,$c,,(t) (3 .6)  

where 

1 1 1 1  

( i m , j m )  E R a , , 8 + , , , . . , a , ,  

with i , , ,(jm) labelling the effective Ising spins corresponding to the clusters Cla,t,,a,,,+l,,,,,a,, 
(R, ,,,, , . . . ,  .,,), respectively. Using (3.5), if the sign of the e f l e c t i u e  spin ! i , , , ( f  + 1 )  
changes, then all spins which are elements of the corresponding cluster under consider- 
ation also have their signs inverted. 

To illustrate this procedure, consider an  n = 2 level hierarchy having N = 9 spins 
and a fixed cluster size ko = k ,  = 3: 

( 1  -1  1 )  m = l  + ( - 1  - 1  1 )  
( 1  - 1  - 1 ) ( - 1  - 1  1 ) ( - 1  1 1 )  ( - 1  1 1 ) ( - 1  - 1  1 ) ( - 1  1 1 )  

Here we show the first, second level ( m  = 1 )  effective spin being updated from - 1  to 
1 which in turn causes the first, first level ( m  = 0) cluster state to invert to its conjugate 
form i.e. ( 1  - 1  - l ) +  ( - 1  1 1). In the above, only the first level (bottom row) actually 
represents the state of the spins (neurons) themselves, whereas the upper level ( m  = 1 )  
carries information about the signs of the magnetisations belonging to each of the 
lower level cluster states. 

In a similar way, the individual spins within the first level ( m  = 0 )  clusters are 
updated according to 

(3 .7)  

m = O ’  

sk,( t + 1 )  = sgn( x:.~:’) 
where 

t Unpublished results by the author. Going to finite temperatures should ameliorate this problem. However, 
whether this would be sufficient for useful memory recall operation remains to be demonstrated. Poor 
storage capacity was also reported by several researchers according to private communications cited by 
Gutfreund [ 101. 
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Our convention will be to leave the spins belong to an  mth level cluster unchanged 
whenever the cluster potential is zero. 

In  practice, for top-down updating, a spin is selected at random, then beginning 
at the top of the hierarchy, the effective spin l,,, , that belongs to the n - 1 level cluster 
which contains the selected spin is updated using (3.5) and (3.6). If this effective spin 
changes sign then all spins which are members of this particular cluster have their 
signs inverted. This procedure is repeated as we move down to the next lower level 
until, at the m = O  level, we determine the sign of s,,, through (3.7) and (3.8). For 
bottom-up updating, the above procedure is reversed. 

3.3. Storage capacity 

Using the Hebb algorithm (2.3) to store states in the Hopfield model necessarily favours 
uncorrelated states and limits the number of stable stored states to be linear in N. In  
contrast, the number of possible memories in the hierarchical model is exponential in 
N. To see how this comes about we observe that, whenever the state of a cluster is 
changed, an  entirely new state of the network results. Hence, the total number of 
different network states N ,  is simply the product of the number of different cluster 
states for each cluster in the hierarchy, that is, 

(3.9) 

The total in (3.9) neglects the conjugate network states which can also occur as stable 
states of the network and, if included, would double N,.  If we let p 3 po  = pI  = . . . = p n - l  
and maintain a fixed branching ratio by keeping the cluster size fixed at k = ko = k ,  = 
. . . = k , - l  then (3.9) simplifies to 

N ,  = p r  h ~ p ~ ' h o h l  . . . pn- l .  

(3.10) 

By setting p = a k k ,  where c y k  is a fixed constant, the total number of states (3.10) 

N,  = p l V - l l  I h - 1 1  

can be maximised for appropriate values of the cluster size k. The result is 

k = a i '  exp(1- k - I )  (3.11) 

which is approximately equal to a ; ' e  for k greater than 1. Hence, for a given value 
of ak and N, the closest integer values of k determined from (3.11) and n consistent 
with k" = N, will give the largest number of states. Once k has been determined, the 
closest practical integer value of p (  = a h k )  can be identified. Computer simulations of 
hierarchies with various p and k values will be presented in 0 4. 

In the next section we provide an estimate of the fraction of errors expected in the 
network states following a signal-to-noise analysis. For now, we note that expression 
(3.9) reflects the total number of different spin configurations that can be stored within 
the network. Whether these patterns can be retrieved as stable network states, however, 
will depend on whether the individual cluster states are stable. In the hierarchical 
model, each cluster behaves like an independent Hopfield network, storing approxi- 
mately orthogonal cluster states according to (3.3) and (3.4). Therefore, the stability 
of the cluster states, and hence the network states, will be determined by the same 
factors that constrain the Hopfield model. That is, the stability of the stored cluster 
patterns will depend on the ratio of pm to k,,, the magnetisation value of the stored 
cluster states [22] and on finite-size effects. 

Finite-size effects, for example, can be seen when only two vectors are stored in a 
three-neuron Hopfield network. I n  this simple case, even though a =$, the network 
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not only perfectly stores any two vectors but will perfectly retrieve these states as well. 
Recall that we use the convention that, whenever the potential evaluates to zero, the 
state of the corresponding spin is left unchanged. 

Although a three-spin network will exactly store and recall any two vectors, if a 
random spin selection updating procedure is used, it will not always recall the same 
stored vector starting from the same initial spin configuration. This is because, in some 
cases, the initial state is equidistant, as measured by the number of spin flips, from 
either of the two stored states. Hence, the particular vector it relaxes to may depend 
upon which sequence of spins is selected. This indeterminacy can be minimised by 
increasing k,  while keeping pm fixed. 

3.4. Perfect memory fraction 

A signal-to-noise analysis can be used to reveal qualitative estimates of the errors 
expected in the recalled network state vectors. Per cluster, both the signal and  
the noise term that occurs in the local spin field (3.6) or (3 .8)  will be the same as 
in the Hopfield model (2.5) only with N + k ,  and PH + p m .  To begin, we ask what is 
the probability P,,,,, that, out of the ( p ,  - l)(k,  - 1)  numbers, each * l ,  arising in the 
non-signal contribution to X!,m), their sum M,, will add up  to a number greater than 
k ,  - 1 ,  the magnitude of the signal contribution? The probability of getting, say, q, 
+ 1  spins out of ( p ,  - l ) (k ,  - 1 )  is denoted by B~2,!,-l)(pm,-l),l/2 where 

(3.12) 

and where (T) is the binomial coefficient = Q ! ( q ! ( Q - q ) ! ) - ' .  If we have q, +1 spins 
then the sum M ,  is simply M ,  = q - [( pm - l)(k, - 1 )  - q ]  = 2q - (p, - l)(k, - 1 ) .  
Therefore, when M ,  = k,  - 1, q takes the value fp,(k, - l ) ,  so that P,,,, is then given 
hv 
- i  

(3.13) 

Since ( 1  - PJk,,' represents the probability that a bit error will not occur within 
an  mth level cluster state, then the probability that no error occurs within the entire 
network state is simply the product of these factors for each cluster in the hierarchy. 
We denote this by Fh for the perfect storage fraction: 

where N,,,, is the number of clusters in the mth level. The validity of (3.14) is checked 
for various numerical simulations in B 4. 

3.5. Information capacity 

In contrast with the large number of states, the total information I,, stored by the 
hierarchical network is actually less than in the standard Hopfield model. Letting 
p = p o  = . . . = p n - ,  and k = ko = . . . = k,,-l the information content of the hierarchical 
model is derived in appendix 1 (equation (A1.6)) with the result 

(3.15) 
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where it is assumed that each cluster can store and  retrieve without error, p states out 
of a choice of N p  per cluster. In general N p  should be simply 2 k .  However, in practice 
Np equals 

k !( (!y? ! (Y) !) - I  

and is less than 2 A  because the choice of cluster states is constrained to non-zero values 
of the cluster magnetisations (see appendix 1 ,  equation (A1.7)). 

We can see that I,, will be less than IH since p < PH and N,, < 2 h .  Although each 
ultrametric state vector is distinct, its capacity to store information is reduced because 
it is comprised of blocks which are common to the other vectors whereas, in the 
Hopfield model, every bit comprising the state vectors potentially carries information. 
Finally, we note that in the limit N,, + 2" and k + N (i.e. n + 1 ) we have I,, + p N ,  which 
is the same as found for the Hopfield model with p = P H .  

3.6. The ultrametric structure of the stored states 

I n  the hierarchical model, the stored network states are correlated in such a way that 
they can be embedded within an  ultrametric topology (see appendix 2 for the definition 
of an  ultrametric space). We will show, however, that these states exhibit a different 
hierarchical structure than that of the original clusters. 

This difference is best illustrated by a specific example. In figure 2 ( a )  we show a 
simple two-level hierarchy with N = 9, k = 3 and p = 2. For this example, each of the 
first level clusters assume two states, each with magnetisation t1 and are labelled by 
the letters A'" throush C'" with superscripts r = 1 or 2 identifying either of the two 
cluster states. The corresponding conjugate states are indicated by A"' through C ' ' '  
and all have magnetisations equal to -1 (e.g. i f  A " ' =  (1 - 1 1 )  then A'"= { - I 1  - 1 ) ) .  
The two second level cluster states are labelled by M'" .  For exactness we choose 
M " ' = { l  - l l } ,  M"'={-lll}, so that, for example, the neru!ork states {A"'I?"C"'} 
and {A ' "B ' "C" ' }  yield the second level magnetisation states M ' "  and Mi" respec- 
ti v e 1 y . 

Figure 2 ( b )  shows the resultant hierarchy of netnork states corresponding to the 
cluster hierarchy of figure 2 ( a ) .  For each magnetisation state M ' "  and M " '  there are 
eight corresponding network states. These states can be visualised, as shown in  figure 
2 ( c ) ,  as residing at the corners of a three-dimensional cube, arranged according to 
their cluster state coordinates. For general n-level hierarchies, this simple picture 
becomes increasingly more complex. In general, the cubes at each level would be 
hypercubes whose dimensionality would depend on the level (increasing as m 
decreases), the cluster size and the number of assigned memories per cluster. 

On the cube, a measure of the relative separation between any two network states 
is given by their cluster state Hamming distance. For instance, when two network 
states are separated by a cube edge, they differ by only one cluster state; if they lie 
across from each other along a diagonal lying on one of the cbbe faces, they differ by 
two cluster states; and  if the two states lie on a diagonal through the cube then all 
three cluster states are different. Moreover, network states lying on different cubes 
differ by at  least two cluster states. Also, for every network state there is a corresponding 
conjugate state not explicitly shown in figures 2 ( a - c ) .  

One can show using this simple example that, in this model, attempts to arrange 
the network states according to their cluster (or spin) state Hamming distances will 
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Figure 2. ( a )  An n = 2  level cluster state 
hierarchy. The letters A"' to C"' ( r =  I ,  2 )  
denote specific memorised ( m  = 1) cluster 
spin states. M"'  denotes the memorised ( m  = 

2)  level cluster magnetisation (or etfective 
spin) states. ( b )  An n = 2 level network state 
hierarchy corresponding to the cluster state 
hierarchy shown in ( a ) .  Each box containing 
three cluster state letters (e.g. A"'B"'C"' ) 
represents 1 of 16, 9 bit network states. Of 
these, 8 have a corresponding magnetisation 
state M"' with the remaining 8 having mag- 
netisation state M'". ( c )  Same as in ( b ) ,  only 
with the states placed on the corners of two 
three-dimensional cubes showing that, 
although all states on a given cube yield the 
same magnetisation state, their relative separ- 
ation, as determined by a cluster state Ham- 

I C 1  ming distance, varies considerably. 

fail to reveal an  ultrametric structure. However, the network states are correlated 
according to their respective magnetisation states. The following distance function 
between any two network states { s ' ~ ' }  and {s" '}  reveals this ultrametric property and  
is valid for an  n-level hierarchy: 

n-1  

d ( { s ' " ' } ,  { s ' ~ ' } )  = d, 
m = O  

with 

and  for m 3 1, 

(3.16a) 

(3.16 b) 
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where i ,  E aa,,,+, ,..., a,, for each of the a,,,  = 1,2 , .  . . , kmtl  clusters and f::' (31;') 
represents the mth level effective spin for the state a ( b )  respectively. The function 
S ( x )  is the usual delta function. 

Clearly d, (d , )  is 0 whenever the spin (effective mth level spin) states are the same 
and 1 when they are different. For example, in the two-level hierarchy, different states 
under the same magnetisation state M'" (or M'") are all a distance d = 1 apart, while 
two states, one with magnetisation state M"' and the other with M'*' are a disLance 
d = 2 apart. It is also clear from the above definition that the total separation distance 
is zero when the two network states are identical. 

As a final note, we comment that this embedding is hidden in the sense that one 
needs to know over which clusters to perform the sums. That is, looking only at the 
network states, without any knowledge of how the clusters were partitioned, it would 
be difficult to identify their ultrametric form. 

3.7. Con ten t-addressability 

At the individual cluster level, the content-addressability of stored patterns should 
depend on the same factors that govern the content-addressability of stored patterns 
within equivalent-sized Hopfield networks. The likelihood of a successful cluster state 
retrieval, therefore, should be determined largely by k,,t pm and the overlap between 
the intended target pattern and initial configuration. The mth level cluster state overlap 
between a stored spin (or effective spin) state { ; i r , v z ) }  ( r ,  = 1,2, .  . . ,pm) and a state 
{flrl is defined by 

(3.17) 

where { i : r l t t J i }  differs from { ? ~ r ~ ~ , l }  in onlyf;,, = $ k m ( l  -r",) spins (or effective spins). 
In addition to the cluster state overlaps, the overlap r between a stored network 

spin configuration { s ! ~ ' }  ( r  = 1,2 , .  . . , N , )  and a spin configuration { s l r l ' }  (differing in 
only f = i N (  1 -I-) spins) is also important and is given by 

(3.18) 

The crucial issue in the hierarchical model is how the collective behaviour of the 
clusters influences the global content-addressing properties of the network. From the 
last section, the stored network states were shown to be correlated according to an 
ultrametric rule, depending on both the magnetisation and individual spin states. This 
suggests that their content-addressability may likewise be dependent on a similar rule. 

Numerical simulations of two-level hierarchies presented in the next section show 
that the content-addressability indeed depends on both the magnetisation and network 
state overlaps. The network shows a strong tendency to converge to final states having, 

t Finite-size effects may complicate the situation when a stored cluster state is corrupted and k , , ,  is very 
small, because there is an increased probability that the other stored cluster state(s) may share an equal or 
higher overlap with the corrupted state. For numerical simulations of large Hopfield networks see, for 
example, Forrest cited in [ 101. 
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in order of importance, the largest, or shared largest, second level ( m  = 1) magnetisation 
state overlap r l ,  followed by the largest, or shared largest, network state overlap r 
with the initial patterns. 

Simulations also show that the dependence on second level magnetisation states 
can be controlled, in part, by the magnitude of the first level ( m  = 0) stored state 
magnetisations M O .  The sensitivity to the magnetisation magnitude can be understood 
by considering what happens to a nominated pattern in a two-level hierarchy after 
randomly flipping f spins. This is equivalent to flipping, on average fo = f /  k ,  spins in 
each first level cluster. (We place a bar over a quantity to denote its average value.) 
As a result, the first level cluster state overlaps To will have an average value To equal 
to the network state overlap r. The second level ( m  = 1) overlap r, , however, does 
not necessarily equal r. In fact, depending on fo and the magnitude of the stored 
cluster state magnetisations M O ,  the value of rl can range from 0 to 1. 

Specifically, when the number of first level cluster spin flips fo is less than +/Mol,  
it is easy to show that the sign of M O ,  and hence the effective spin, cannot change. If 
this holds for all of the first level clusters, then the second level magnetisation state is 
also not changed and the value of rl is 1. On the other hand, if the number of first 
level cluster spin flips exceeds ilMoI, there is a chance that the sign of MO may change 
and thereby reverse the sign of the effective spin for that cluster. This only occurs if 
a disproportionate number of same-sign spins happen to be selected and reversed in 
sign. The greater the number of effective spin sign changes, the more corrupted the 
second level magnetisation state becomes and the lower the resultant overlap rl with 
the original pattern. Although we have only discussed what happens in a two-level 
hierarchy, similar arguments can be made for networks having an arbitrary number 
of levels. 

Table 1. Tabulated values of A?:,, U,,,, and M&(max/min) for various r,, values assuming 
k ,  = 30. The last column displays simulation results for a two level hierarchy having 
po = p ,  = 2, k,  = 30, k ,  = 4 and r,,,,,,.x, set equal to I',,, and shows qualitatively how the 
percentage recalled successfully depends on MO. 

O h  recalled 
'successfully' 

I 
5 12 2 0.4 5.45 

8 1.6 5.26 
16 3.2 4.62 

3 10 2 0.67 5.24 
8 2.67 5.06 

16 5.32 4.45 
8 2 0.93 4.92 

8 3.73 4.75 
16 7.47 4.17 

1 5 2 1.33 4.14 
8 5.33 4.0 

16 10.67 3.51 
3 2 1.6 3.34 

8 6.4 3.22 
16 12.8 2.83 

I 

7 
I5 
- 

2 

4 

1 0 2 2 0 
8 8 0 

16 16 0 

2 1 2 4  
8 1 2 4  

1 6 1 2 4  
2 i 2 0  
8 5 2 0  

16*20 
2 *  16 
8* 16 

16* 16 
2 *  10 
8* 10 

16* 10 
2 1 6  
8 1 6  

1 6 1 6  
2 * 0  
8*0 

1 6 * 0  

24 
36 
41 
27 
46 
62 
38 
55 
92 
48 
79 

100 
59 
88 

100 
100 
100 
100 



Exponential storage and retrieval 4719 

k ,=4,  

'O0I 

k l = 8  

A k1=16 

A M 0 = 1 6  

Figure 3. ( a )  Simulation results showing the effect 
of k ,  on the percentage recalled 'successfully' against 
r r,,,,,,, is the overlap of the initial state with 
the target state. A retrieval is considered successful 
if the final state differs from the target state by no 
more than &N spins. Final states, other than the 
intended target state, which have an equal or higher 
overlap with the initial state, are also considered 

1 I ? \  successful. Lines are drawn between data points for 
1 L I  

clarity. ( b )  Same as k, = 30 in ( a )  but with M,varied. 
( c )  Same as k , = 8  in ( a )  but with k ,  varied. 0 0 5  1 0  

rln,tlot 

In appendix 3 we derive an expression for the probability of obtaining a cluster 
magnetisation, M k  after fm random spin flips (but never the same spin twice). Using 
this expression the average magnetisation M k  and standard deviation uM,;, after fm 
spin flips can be evaluated. Table 1 gives the calculated results for fa ,  A?;, uMb and 
MA(max/min) for various To and MO values assuming k,  = 30. The last column gives 
numerical simulation results for the percentage recalled 'successfully' using top-down 
updating on a two-level hierarchy with ko = 30, k ,  = 4 and T initialised at the value To. 
These data only serve to illustrate qualitatively how MO affects the recall performance. 
At the time of pattern storage, the magnitude of the first level cluster state magnetisations 
were held to the values MO = 2 , 8  and 16 while M ,  was fixed at 2. A recall is labelled 
successful if the final state differs from the intended target state in no more than &N 
spins. These simulation data are also presented in figure 3 ( 6 )  and reviewed in the 
next section. 

In general, for a two-level hierarchy with top-down updating and small ( Y k ,  when 
is large compared to MA, (e.g. when To = and MO = 2 in table l ) ,  we expect the 

percentage of those recalled successfully to be low because of the unpredictability in 
the resultant magnetisation state overlap r, with the original pattern. When uMb is 
less than or equal to A?; (e.g. when r,=$ and M o = 8  in table l ) ,  we expect the 
probability of a sign change occurring in MO to be much less, resulting in a higher r, 
overlap value and a corresponding increase in the percentage recalled correctly. If fo 
is less than tlM,l (e.g. when To = $ and MO = 16 in table l ) ,  then no sign change in MO 
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will occur. In this case we would anticipate a high recall success rate. Of course, these 
expectations are only approximate because the network dynamics also depend on other 
factors such as k, and ak. 

So far, the assumption has been that the updating is top-down. However, bottom-up 
updating could also have been used. The two implementations will differ somewhat 
in their content-addressing performance. When the updating is bottom-up, the first 
level cluster states have the first opportunity to correct some of their corrupted bits 
and possibly restore the sign of the cluster state magnetisation to its original value. 
At the next level up, there is then a higher probability that the second level magnetisation 
state will be less degraded, and therefore have an increased chance of relaxing to its 
uncorrupted form. This improvement is then carried into the next higher level and so 
on. 

4. Numerical simulations 

The effectiveness of the storage prescription and tunnelling relaxation algorithm was 
investigated for a total of ten different hierarchical networks. Table 2 summarises the 
results of these simulations. M,,, is the mth level cluster magnetisation which was 
constrained to 1 ( 2 )  for k odd (even). We show in table 2 twice N , ,  since the presence 
of the conjugate network states effectively doubles the number of different stable states 
that can occur during the simulations. For each of the 10 hierarchies, nominal cluster 
vectors were selected at random and stored using the storage prescriptions (3.3) and 
(3.4). Relaxation of the network always began with a randomly selected state vector 
and proceeded top-down according to algorithms (3.5)-(3.8). The updating ceased 
after a stable network state was found. This state was then checked to determine 
whether it correlated with any known member of the set of possible stored network 
states. 

The number of independent simulations completed for each hierarchy was con- 
tinued until either the total number of new stable states found reached the maximum 
possible for that given hierarchy (e.g. 25 and 26 for hierarchies 1, 2 and 7 respectively), 
or until it reached 2'. This arbitrary upper limit was set because, for some of the 
hierarchies, the maximum number of different possible states approaches intractably 
high numbers, in one case as high as 222 states. 

Table 2. Summary of calculated and simulation results for various hierarchies. 

H k,,, M,,, P,, ,  n N 2Nt ",IN,, Fh, Fh, 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

3 
4 
7 
8 
3 
4 
k ,  = 30, k ,  = 4 
k, = 30, k ,  = 4 
k ,  = 30, k ,  = 4 
k,  = 30, k ,  = 4 

L 
M O =  MI = 2 
MO = MI = 2 
M,, = MI = 2 
MO= MI = 2  

2 2 9 2 5  1 
2 2 16 26 1 

2 2 64 2" 1 

2 3 64 222 1 

po=3,  p l = 2  2 120 2234 0.51 
p0=6,  p1 = 2  2 120 2264 0.01 
po=15,  p , = 2  2 120 22154 0 

2 2 49 29 1 

2 3 27 214 I 

P o = P i = 2  2 120 2224 1 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
0.99 1 
0.30 0.31 
0 0 
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The quantity N , , / N , ,  is the ratio of the number of recalled memorised states 
(starting from a randomly generated initial state), to the number of recalled stable 
states. Any deviation of N , , / N , ,  from 1 implies that stable states were found which 
were not members of the set of possible stored states. As apparent from table 2, and  
as expected, when the number of stored cluster states was kept at 2 the hierarchical 
model always relaxed to one of the stored network states (i.e. N m 5 /  N,,  = 1 ) .  That is, 
hierarchies 1-7 exhibted both perfect storage and perfect recall. Because N ,  was 
relatively small for hierarchies 1, 2 and 7 each having 9, 16 and 120 spins respectively, 
we were able to run a sufficient number of simulations to completely exhaust the set 
of possible stored states, retrieving all of the stored states and no others, thus verifying 
the ability of the model to store and retrieve an exponential number of states. 

In simulations 8, 9 and 10, the number of cluster state vectors was set at 3, 6 and 
15 respectively. The first level cluster size was fixed at k, = 30 so that the corresponding 
effective cluster alphas were 0.1, 0.2 and 0.5 respectively. These three simulations 
allowed an  analysis of how cluster state errors affect the overall final network state 
errors. In table 2, F,,, ( Fh,,) represents the calculated (actual) perfect memory fraction 
errors. All evaluated quantities shown are rounded to the second decimal place. The 
determination of F,,,, was based on simulations whose initial states were randomly 
selected from the known set of assigned states. In contrast, Nms/  N,,  was determined 
from simulations that began with a randomly generated state and provides a measure 
of the network’s ability to function as a content-addressable machine. As evident from 
table 2, good agreement was found between the expected perfect memory fractions 
calculated using (3.14) and  the actual observed perfect memory fractions. 

Hierarchy 10 shows that, when p, ,  was set equal to 15 (i.e. a. = 0.51, both N,J N, ,  
and Fh,, were found to be zero. When p O  was set to 6, (i.e. a. = 0.2) as in hierarchy 9, 
N , , / N , ,  was still essentially zero; however, F,,,, increased to 0.31. In other words, 
after being placed into one of its assigned memory configurations there remained a 
finite probability of the network persisting in that state following successive updates. 
Hierarchy 8 with po  set at 3 (i.e. a,?=0.1),  not only had a perfect memory fraction 
close to one but found to have a non-zero N,,, , /N,,  factor, thus indicating the content- 
addressability of some of its stored patterns. 

To more carefully examine the content-addressability, several different two-level 
hierarchies were selected for study. For this analysis, the number of stored cluster 
states was always kept at 2 (i.e. p o  = pI = 2 )  to avoid any recall errors. However, the 
cluster size k, and magnetisation magnitudes M,, were allowed to take on various 
values. For each simulation trial, a stored target network state { s ’ , ~ ’ }  was selected at 
random and a sufficient number of spins (each chosen at random) were flipped to 
achieve an  initial overlap l-,ni,ial with the target state. 

Because of the model’s high storage capacity,. there may exist other stored states 
which share an  equal or higher overlap with the corrupted state { S : ~ [ . ) } .  Relaxation to 
any of these equivalent stored states, or the target state, up to a maximum deviation 
of A N  spins would be considered a successful recall. This degeneracy of possible 
final states increases for small k ,  and tends to bias the data, especially for small rinitial. 

The data shown represent the results of between 100 and 300 runs per each rinitial 
with the updating sequence always top-down. Although we d o  not show any explicit 
results, we found that bottom-up updating generally gave equivalent or better content- 
addressing performance. This was anticipated from the analysis provided in the last 
section. With only 100-300 runs per data point, the results presented can only be 
considered approximate, although the trends displayed are believed to be correct. 
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Figures 3( a - c )  show how the percentage recalled successfully versus the initial 
overlap rinitial depends on the values of ko,  MO and k, respectively. In figure 3 ( a ) ,  ko 
took the values 8 and 30 while k, was held constant at 4 and the ratio M , /  k, ( m  = 0, 1) 
was maintained at approximately i. In both cases, the total number of network states, 
2N,,  was 64. There is a clear improvement in the percentage recalled successfully as 
k, is increased. The levelling off of the k, = 8 curve at small rinitia, is most likely an 
artefact of the degeneracy alluded to earlier. 

With k, and k, fixed at 30 and 4 respectively, figure 3 ( b )  reveals the strong 
dependence on the first level ( m  = 0) magnetisation magnitude. The performance 
improvement as MO is increased is in agreement with the analysis given in the last 
section. In contrast, with k o =  8 and M , / k ,  =+, ( m  =0,  l ) ,  figure 3 (c )  reveals no 
obvious trend as k, is varied. The percentage recalled successfully does not seem 
particularly sensitive to the size of the upper level cluster k, and perhaps more 
significantly, to the large differences in the number of stored states, with 2N, having 
the values 262 144, 1024 and 64 for k, = 16, 8 and 4 respectively. More extensive 
simulations using larger k, values are needed to determine if this lack of sensitivity is 
general, or whether an optimum k, value exists. 

A great deal can be learned about the role the magnetisation states play in the 
content-addressing process without deliberately setting the magnetisation state overlaps 
between initial and target patterns. From the simulations already performed, a com- 
parison can be made of the magnetisation state overlap between both the initial and 
final states and the initial and intended target patterns. Figure 4( a )  shows the percen- 
tage of cases that were found to have second level ( m  = 1 )  initial/final magnetisation 
overlaps (r, )final greater than or equal to the initial/target magnetisation overlaps 
(rlItarget. The percentage is quite high ( 8 5 %  or better) and not particularly sensitive 
to the initial network spin state overlap rinitla,. This indicates that the network has a 
strong tendency to iterate towards configurations having the largest magnetisation state 
overlap with the initial patterns. 

k ,  = 8, M3/ko = M, / k ,  = 1 / 2 

( U )  

0 0 5  1 0  
rtnltol 

0 k l = 4  

kl= 8 

A kl=16 

I l b )  

0 0.5 1 .o 
r,n,t,,l 

Figure 4. ( a )  Percentage of trials which had ( m  = 1 )  level initial/final magnetisation state 
overlaps (r,),,,, greater than or equal to the initial/(intended target) magnetisation state 
overlaps (r,),.,rgel. ( b )  Plot of R against r,,,,,,, as a function of k ,  . See text for a complete 
definition of R. In conjunction with the results from ( a ) ,  a value of R greater than one 
essentially means that the network prefers to content-address patterns according to an 
ultrametric rule involving both the magnetisation state and network state overlaps. 
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To assess the recall efficiency of stored network states belonging to the dominant 
magnetisation state, we form the ratio R of the percentage of successful recalls for 
states having (r,),,,, = (I'l)tdrpeI (i.e. states remaining within a given magnetisation 
state), as a function of to the percentage of successful recalls having no such 
restrictions as in figures 3 ( a - c ) .  Figure 4 ( b )  plots the ratio R as a function of r,,,[,,, 
for various k ,  values with k ,  at 8 and a constant ratio of M ,  to k ,  of In all cases 
(except at T,,,t,d, = a  for k ,  = 4) the value of R is greater than or  equal to 1. Finite-size 
effects may be responsible for the R roll-off at r,n,t,d, = a and k ,  = 4. 

The combined results from figures 4( a )  and 4( b )  indicate that, at least in two-level 
hierarchies, the model prefers to content-address patterns by associations which respect 
the ultrametric embedding of the states. Although not demonstrated, we believe this 
property will carry over into general n-level hierarchies. 

5. Discussion 

We have provided numerical examples which show that a fully connected hierarchical 
neural network can both store and successfully recall an exponential number of 
ultrametrically correlated state vectors. Because of the large multiplicative effects, the 
individual cluster recall error probabilities must be kept low for useful operation. 
Implementation of the hierarchical model is straightforward and, if rendered in micro- 
circuit form, would be useful in many associate recall applications. 

The network is able to store an exponential number of states vectors because 
whenever any cluster changes its state, a new network state results. Each cluster 
operates like a n  independent Hopfield network, relaxing independently, except for 
possible state (conjugate state) inversions. The magnetisation state requirements of 
the upper level antecedent clusters determine whether or not a lower level cluster will 
invert. One  can view the upper level parent cluster states as dynamically breaking the 
lower level offspring cluster state (conjugate state) symmetry to achieve a global 
reduction in energy. This global reduction in energy is different from that found in 
constraint satisfaction modelst which seek a true single global minimum in the network 
energy. In the present hierarchical model, the network is 'globally' minimised if each 
cluster at every level has its energy locally minimised. 

In spite of its ability to store a large number of states, the information capacity of 
the hierarchical model was shown to be actually less than that of the standard Hopfield 
model with an equivalent number of spins (neurons). However, in certain applications 
the ability to distinguish between a large number of different states may be of greater 
importance than the storage of a limited number of states, each having a high informa- 
tion content. 

The content-addressability of stored input patterns within two-level hierarchies was 
investigated as a function of various model parameters. The model showed a strong 
preference to access states via an ultrametric path, whereby stored states having both 
the largest magnetisation and  network state overlaps with the initial state had the 
highest probability of being retrieved. The attraction region surrounding each state 
could be increased by increasing the first level cluster size k ,  or increasing the magnitude 
of the first level cluster state magnetisation M O .  Increasing MO reduces the information 
capacity, but does not limit the storage capacity unless the desired number of stored 
patterns per cluster p is greater than N,, as given by equation (A1.7). 

+ Boltzmann machines are models of this type (see,  e .g . ,  [23]).  
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The hierarchical organisation of memorised patterns may have significance for 
neural networks belonging to multicellular animals. In  human memory, the organisa- 
tion of information is by classification according to recognised patterns and associations 
with previously stored memories. This superficially seems consistent with some form 
of hierarchical organisation. There is an interesting similarity between hierarchical 
cluster configurations and the size and organisation of dendritic bundles [24] ( a  general 
review can be found in [XI) located within the cortical column of mammals. From 
physiological observations, the number of neurons per bundle is suggested to be of 
the order of 50. 

For the present hierarchical model, following (3.1 1 ), the most efficient utilisation 
of a given number of neurons is achieved when only two vectors are stored per cluster 
and the cluster size is kept close to 3. However, if we increase the number of stored 
vectors per cluster to 3, then the optimum cluster size having an approximately equal 
low recall error probability increases to about 50. In  biological systems, a three-neuron 
cluster arrangement would probably be unacceptably sensitive to the random neuron 
failures which occur regularly throughout the lifespan of the organism. In  addition, 
when a random neuron updating procedure is used, the relaxation process is not always 
deterministic and is exacerbated in clusters of small size. At the expense of increasing 
the total number of neurons, a 50-neuron cluster, on the other hand, would provide 
not only a more robust defense against random neuron failures, but also a more 
deterministic response to external stimuli. 

Regarding hierarchical structure, one interpretation of bundle organisation might 
be to assume that within each bundle (cluster) a dedicated neuron serves as a summing 
node for all remaining neurons within the bundle. This neuron would then communi- 
cate its tailed information to other neurons, which are themselves located within 
different bundles. Contained within each of these new bundles is a specialised neuron 
which polls all its members relaying the result to yet another neuron in a different 
bundle and  so on up the pyramid. This construction suggests that the basic wiring 
(bundle to bundle) is responsible, at least in part, for the memory function most likely 
related to long term memory, particularly that associated with information learned 
during the animal’s infancy. in other words, the ‘older’ neuron connections serve 
predominantly as summing junctions carrying the oldest most general pieces of informa- 
tion while the ‘younger’ neuron links provide additional details by making up the 
remaining connections within each bundle. 

In  closing, we comment that although the hierarchical model in its present form 
can readily and usefully be implemented in many applications, several extensions 
remain to be explored. For instance, the content-addressability of patterns stored 
within hierarchies with more than two levels should be investigated. The effects of 
random synaptic potential fluctuations on the network (i.e. finite-temperature effects) 
should also be examined. Since random fluctuations actually occur in the synaptic 
emission process in real neurological systems, the effects of finite temperature on the 
network’s performance would be of particular interest. 

Appendix 1. Information capacity of the Hopfield and hierarchical models 

We define the information capacity of an  N-bit word stored in the Hopfield model to 
be related to the probability of that would occur by the random assignment of states 
to each of its N bits. Since each bit can take only one of two values, the probability 
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of selecting a n  N-bit word is simply P,, = (4)”. The information capacity per word is 
then defined to be the log base 2 of one over Pw., that is, 

( A l . l )  

= N. 

the use of log base 2 in In was to normalise the information content of one binary bit 
to unity. In ( A l . l ) ,  I ,  is the information content of a single word or pattern. Now, 
if each of the PH patterns stored in the Hopfield model is independent and can be 
retrieved without error, then the total information capacity of the Hopfield model 
becomes 

(A1.2) 

If the patterns are constrained to fixed magnetisations MH, then the number of 
different states goes from 2N to ( ( , , 2 ) ( M , , + , % , )  (see equation (A1.7)). Hence, IH reduces 
to 

N 

(A1.3) 

Applying Stirling’s approximation reduces (A1.3) to the same expression (6.1) found 
by Amit et al [22] with their a = MH/N. When errors are allowed in the recalled 
states, the information content is further reduced and  equation (A1.3) no longer applies. 
These effects are considered in 1221. 

To determine the information capacity of the hierarchical model we first need to 
determine the amount of information stored within each cluster. For simplicity, assume 
that k = k,  and p = p ,  for all m and only p states out of a choice of Np are stored 
per cluster. Since the probability of selecting one of Np states is P,.,. = (1/ Np), then 
using the same convention as before, the information content per cluster per pattern 
I,, is simply 

(A1.4) 

= log, ( Np). 
Because p patterns are stored per cluster and  are independent (recall that each cluster 
behaves like an  independent Hopfield network) then the information carried per 
cluster is 

I ,  = PIc,. (A1.5) 
where we assume that p is small enough that no errors occur in the recalled cluster states. 

The total information capacity of the hierarchical network I,, is the sum of the 
information contained in all of the clusters. Since the total number of clusters in the 
network is given by (( N - l ) / ( k  - l ) ) ,  the total information capacity becomes 

(A1.6) 

As indicated for IH, a similarly more complicated expression results if we allow errors 
to occur in the retrieved cluster states. 



4726 C R Willcox 

For a given cluster of size k, we can determine the possible number of different 
k-bit vectors, each with the same magnetisation M. If the number of +1 spins in a 
vector of length k is q then the number of - 1 spins is (k - 4). Hence, the magnetisation 
is M = q - (k  - q ) ,  implying that q = I (  M + k). Therefore, the number of vectors N,, 
which have magnetisation M is given by the binomial coefficient 

(A1.7) 

where M must be even(odd) for k even(odd1. 

Appendix 2. Ultrametric spaces 

An ultrametric space is a simple extension of a metric space. Recall that a metric 
space is a set X with a distance function d between any two points that obeys the 
following for any x, y and z in X :  

d ( x ,  x)  = 0 

d ( x ,  Y )  = d ( Y ,  x)  (A2.1) 

d(x , z )cd (x ,y )+d(L . , z ) .  

An ultrametric space is also a metric space ( X ,  d )  which has the following additional 
property: 

d(x,  z) c max(d(x, Y) ,  d(y, z)) .  (A2.2) 

The ultrametric inequality (A2.2) implies that, for any three points x, y and z residing 
in an ultrametric space, of the three distances that occur between any two pairs, two 
of the distances will be equal and the third will always be less than or equal to the 
other two. A hierarchical tree structure naturally obeys this property where the distance 
between different end points at the bottom of the tree is measured by the height one 
has to ascend to find a common ancestor. For further discussion see references cited 
in [26]. 

Appendix 3. Cluster magnetisation probabilities 

We wish to find the probability that a cluster of size k, and initial magnetisation M ,  
will go to a new magnetisation M L  after flipping f, spins at random, but never the 
same spin twice. To evaluate this probability, we suppose that the cluster state contains 
n+ - 1 , = s ( k , + M , ) ,  +1 spinsand n ; = $ ( k , - M , ) ,  -1 spins (sothat n : - n , = M , )  and 
ask for the probability of finding f:, +1  spins and f, = (f, -f:), -1 spins out of fm 
random selections. This involves the product of two terms. The first term gives the 
number of arrangements containing exactlyf: , + I  spin selections and f i, -1 selections 
out off, total selections, i.e. the binomial coefficient 
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The second factor is the probability of actually realising any one of these different 
arrangements. Since we select spins at random but never the same spin twice one can 
show that the denominators (numerators) in this probability go like 

respectively. Therefore, the probability Pf(f;) of finding fL +1 spins in f, selections 
is then 

(A3.1) 

where it is assumed that f: s n i  and f, S n, .  

n L - n ,  to M A  where 
Note that Pf(fL) is also the probability that the magnetisation goes from M ,  = 

(A3.2) M k  = ( n :  -fL+f;) - ( n ;  -f; +f:) 
= M ,  -2(2f: - f m ) .  

Using Pf(fL) and M A  above, and summing overf:, the average and standard deviation 
magnetisations M k  and uM ,;? become respecively, 

(A3.3) 

(A3.4) 

By a different argument one can show that Mk should equal T',M,,,, where r, = 
(1 -2f,/k,). This allows a check on the validity of Pf(f;) through (A3.3). Indeed, 
after carrying out the sum in (A3.3) the two results agree. 
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